- 推荐系统技术演进趋势:从召回到排序再到重排 推荐系统 2021-08-08 15822
近日读到一篇非常不错的文章,忍不住转载过来,方便日后学习查阅,作者是新浪微博的张俊林,之前有幸听过他在线下的技术分享,印象深刻。这篇文章涵盖推荐系统最重要的三个环节:召回、排序、重排序涉及的相关技术路线,通过近两年的经典案例和论文,归纳总结了相关技术的发展演化趋势。 本文在原文的基础上,添加了相关论文的下载链接,并为了提高阅读性,文章排版稍有修改。 原文...
- 推荐系统中的多任务学习 推荐系统 2021-07-09 21144
多目标排序综述 在之前的🔖《推荐系统中的排序学习》一文中,我在最后简单提到过排序学习的一大作用就是可以用于多目标排序,也顺带提到了其他解决方案,本文我们就重点介绍另外一种解决方案,多任务学习。 还是先了解一下背景,介绍一下什么是多目标排序。 多目标排序通常是指有两个或两个以上的目标函数,目的是寻求一种排序使得所有的目标函数都达到最优或满意。 在工业界推...
- EMBEDDING 在大厂推荐场景中的工程化实践 推荐系统 2021-06-21 21913
应用综述 上一篇文章我们提到 Embedding 的源头、原理、以及在推荐系统场景下常用的几种延伸方法,这篇文章则通过解读 YouTube、Airbnb、Alibaba 的三篇经典论文,来总结 Embedding 在工业界的一些用法和技巧,这三篇论文亮点众多,提供的经验非常值得我们去细细品味和借鉴。这篇文章篇幅较多,几乎把三篇论文的重要内容都进行了解读和总...
- 推荐系统中 EMBEDDING 的应用实践 推荐系统 2021-05-05 26702
自 Embedding 的概念问世以来,Embedding 的探索和应用就没有停止过,Word2Vec、Sentence2Vec、Doc2Vec、Item2Vec,甚至 Everything2Vec。对,“万物皆可 Embedding”。几年来,Embedding 在推荐系统中的应用也越来越多,方式众多,技法新颖。 在之前的文章中,《文本内容分析算法》和 ...
- 推荐系统中的排序学习 推荐系统 2021-03-20 17575
排序学习(Learning to Rank,LTR),也称机器排序学习(Machine-learned Ranking,MLR) ,就是使用机器学习的技术解决排序问题。自从机器学习的思想逐步渗透到信息检索等领域之后,如何利用机器学习来提升信息检索的性能水平变成了近些年来非常热门的研究话题,因此产生了各类基于机器学习的排序算法,也带来了搜索引擎技术的成熟和发展...
- 基于矩阵分解的推荐算法 推荐系统 2021-02-20 12416
简介 推荐领域的人一般都会听说过十年前 Netflix Prize 的那场比赛,这一年可以说是推荐算法的春天,从比赛中诞生了众多推荐算法,而矩阵分解就是其中非常著名的一个。矩阵分解(Matrix Factorization,FM)是协同过滤的一个分支算法,在推荐领域具有崇高的地位,因为它同时兼具了协同过滤、隐语义以及机器学习的特性,再加上矩阵分解易于实现和...
- 基于协同过滤的推荐算法 推荐系统 2021-01-12 12298
简介 协同过滤(Collaborative filtering,CF)与基于内容的推荐算法一样,也是一个非常古老的推荐算法。但是直至今日,协同过滤依然是应用最广泛的推荐算法,在推荐领域占有极其重要的地位,甚至 “协同过滤” 一度成为推荐系统的代名词。按维基百科的说法,协同过滤有广义和狭义两种定义,广义协同过滤是指采用某项技术,对多源数据(如不同的代理、视点...
- 工业界推荐系统的评测标准 推荐系统 2020-10-01 7358
综述 推荐系统是一个有着诸多复杂因素联动起作用的系统,从诞生到成熟,推荐系统本身就带着很多不确定性。因此,推荐系统在研发完成后,作为技术人员的我们并不是马上就结束了战斗,在往后的日子里,我们必须时时刻刻地知道它当前的状态好不好,在整体环境中是不是很健康,所以必须有一系列测试方法和评测指标来了解当前的推荐系统的 “系统体征” 信息,以方便我们能够在复杂因素联...